
Regression fitting in single-source capture-recapture models
Source:R/estimatePopsizeFit.R
estimatePopsizeFit.RdestimatePopsizeFit does for estimatePopsize what
glm.fit does for glm. It is internally called in
estimatePopsize. Since estimatePopsize does much more than
just regression fitting estimatePopsizeFit is much faster.
Usage
estimatePopsizeFit(
y,
X,
family,
control,
method,
priorWeights,
coefStart,
etaStart,
offset,
...
)Arguments
- y
vector of dependent variables.
- X
model matrix, the vglm one.
- family
same as model in
estimatePopsize.- control
control parameters created in
controlModel.- method
method of estimation same as in
estimatePopsize.- priorWeights
vector of prior weights its the same argument as weights in
estimatePopsize.- etaStart, coefStart
initial value of regression parameters or linear predictors.
- offset
offset passed from by default passed from
estimatePopsize().- ...
arguments to pass to other methods.
Value
List with regression parameters, working weights (if IRLS fitting method) was chosen and number of iterations taken.
Details
If method argument was set to "optim" the stats::optim
function will be used to fit regression with analytically computed gradient and
(minus) log likelihood functions as gr and fn arguments.
Unfortunately optim does not allow for hessian to be specified.
More information about how to modify optim fitting is included in
controlMethod().
If method argument was set to "IRLS" the iteratively reweighted
least squares. The algorithm is well know in generalised linear models.
Thomas W. Yee later extended this algorithm to vector generalised linear models
and in more general terms it can roughly be described as
(this is Yee's description after changing some conventions):
Initialize with:
converged <- FALSEiter <- 1\(\boldsymbol{\beta}\)
<- start\(\boldsymbol{W}\)
<- prior\(\ell\)
<-\(\ell(\boldsymbol{\beta})\)
If
convergedoriter > Maxitermove to step 7.Store values from previous algorithm step:
\(\boldsymbol{W}_{-}\)
<-\(\boldsymbol{W}\)\(\ell_{-}\)
<-\(\ell\)\(\boldsymbol{\beta}_{-}\)
<-\(\boldsymbol{\beta}\)
and assign values at current step:
\(\boldsymbol{\eta}\)
<-\(\boldsymbol{X}_{vlm}\boldsymbol{\beta}\)\(Z_{i}\)
<-\( \eta_{i}+\frac{\partial\ell_{i}}{\partial\eta_{i}} \mathbb{E}\left(\frac{\partial^{2}\ell_{i}}{ \partial\eta_{i}^{T}\partial\eta_{i}}\right)^{-1}\)\(\boldsymbol{W}_{ij}\)
<-\(\mathbb{E}\left(\frac{\partial^{2}\ell}{ \partial\boldsymbol{\eta}_{j}^{T}\partial\boldsymbol{\eta}_{i}}\right)\)
where \(\ell_{i}\) is the ith component of log likelihood function, \(\eta_{i}\) is the vector of linear predictors associated with ith row and \(\mathbb{E}\left(\frac{\partial^{2}\ell_{i}}{ \partial\eta_{i}^{T}\partial\eta_{i}}\right)\) corresponds to weights associated with ith row and \(\boldsymbol{W}\) is a block matrix, made of diagonal matrixes \(\mathbb{E}\left(\frac{\partial^{2}\ell}{ \partial\boldsymbol{\eta}_{j}^{T}\partial\boldsymbol{\eta}_{i}}\right)\)
Regress \(\boldsymbol{Z}\) on \(\boldsymbol{X}_{vlm}\) to obtain \(\boldsymbol{\beta}\) as: \[\boldsymbol{\beta}= \left(\boldsymbol{X}_{vlm}^{T}\boldsymbol{W}\boldsymbol{X}_{vlm}\right)^{-1} \boldsymbol{X}_{vlm}^{T}\boldsymbol{W}\boldsymbol{Z}\]
Assign:
converged <-\( \ell(\boldsymbol{\beta})-\ell_{-} < \varepsilon\cdot\ell_{-}\) or \( ||\boldsymbol{\beta}-\boldsymbol{\beta}_{-}||_{\infty} < \varepsilon\)iter <- iter + 1
where \(\varepsilon\) is the relative tolerance level, by default
1e-8.Return to step 2.
Return \(\boldsymbol{\beta}, \boldsymbol{W}\),
iter.
In this package we use different conventions for \(\boldsymbol{X}_{vlm}\) matrix hence slight differences are present in algorithm description but results are identical.
References
Yee, T. W. (2015). Vector Generalized Linear and Additive Models: With an Implementation in R. New York, USA: Springer. ISBN 978-1-4939-2817-0.
Examples
# \donttest{
summary(farmsubmission)
#> TOTAL_SUB log_size log_distance C_TYPE
#> Min. : 1.00 Min. : 0.000 Min. : 4.102 Beef :5336
#> 1st Qu.: 1.00 1st Qu.: 4.673 1st Qu.:10.351 Dairy:6700
#> Median : 1.00 Median : 5.347 Median :10.778
#> Mean : 2.34 Mean : 5.259 Mean :10.662
#> 3rd Qu.: 3.00 3rd Qu.: 5.940 3rd Qu.:11.099
#> Max. :47.00 Max. :10.480 Max. :12.097
# construct vglm model matrix
X <- matrix(data = 0, nrow = 2 * NROW(farmsubmission), ncol = 7)
X[1:NROW(farmsubmission), 1:4] <- model.matrix(
~ 1 + log_size + log_distance + C_TYPE,
farmsubmission
)
X[-(1:NROW(farmsubmission)), 5:7] <- X[1:NROW(farmsubmission), c(1, 3, 4)]
# this attribute tells the function which elements of the design matrix
# correspond to which linear predictor
attr(X, "hwm") <- c(4, 3)
# get starting points
start <- glm.fit(
y = farmsubmission$TOTAL_SUB,
x = X[1:NROW(farmsubmission), 1:4],
family = poisson()
)$coefficients
res <- estimatePopsizeFit(
y = farmsubmission$TOTAL_SUB,
X = X,
method = "IRLS",
priorWeights = 1,
family = ztoigeom(),
control = controlMethod(verbose = 5),
coefStart = c(start, 0, 0, 0),
etaStart = matrix(X %*% c(start, 0, 0, 0), ncol = 2),
offset = cbind(rep(0, NROW(farmsubmission)), rep(0, NROW(farmsubmission)))
)
#> Iteration number 1 log-likelihood: -17550.114
#> Parameter vector: -2.376169746 0.526024958 -0.056369900 0.413872736 -1.952364227 0.029469787 -0.352737911
#> log-likelihood reduction: Inf
#> Value of gradient at current step:
#> 1489.26417 8462.99644 15802.73557 1127.53995 -418.45144 -4455.57223 -253.63196
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 2.3761697
#> ----
#> Iteration number 2 log-likelihood: -17300.07
#> Parameter vector: -2.633896686 0.582395291 -0.064073582 0.667740572 -3.095480026 0.047207764 0.046264308
#> log-likelihood reduction: 250.04378
#> Value of gradient at current step:
#> -28.899411 -315.159403 -298.325366 -121.257418 -45.032685 -482.019954 -20.096746
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 1.1431158
#> ----
#> Iteration number 3 log-likelihood: -17287.188
#> Parameter vector: -2.504876876 0.575295120 -0.073821708 0.612160832 -3.119640124 0.011888093 0.029514971
#> log-likelihood reduction: 12.882004
#> Value of gradient at current step:
#> 41.5353296 252.3498380 448.9046975 30.7496910 -8.7641682 -93.3640710 -5.3929815
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.12901981
#> ----
#> Iteration number 4 log-likelihood: -17286.557
#> Parameter vector: -2.608145817 0.582912458 -0.069091913 0.622397984 -3.562325812 0.036715781 0.114980134
#> log-likelihood reduction: 0.63083188
#> Value of gradient at current step:
#> 1.65638471 9.43319152 16.29083146 -0.22561323 -1.22104226 -13.44032132 -0.49242892
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.44268569
#> ----
#> Iteration number 5 log-likelihood: -17286.527
#> Parameter vector: -2.589615777 0.583968034 -0.071694931 0.624101247 -3.331535027 0.010372891 0.146052220
#> log-likelihood reduction: 0.030118595
#> Value of gradient at current step:
#> 0.0045622452 0.7724124445 0.4383942297 0.1410982952 -0.1743585631 -1.7157841593 0.0436948698
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.23079079
#> ----
#> Iteration number 6 log-likelihood: -17286.524
#> Parameter vector: -2.603607106 0.584395570 -0.070803343 0.626306026 -3.469650528 0.021013822 0.172842019
#> log-likelihood reduction: 0.0033094037
#> Value of gradient at current step:
#> -0.229287967 -1.254231939 -2.663094385 -0.136018786 -0.065501279 -0.875136888 -0.037830598
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.1381155
#> ----
#> Iteration number 7 log-likelihood: -17286.523
#> Parameter vector: -2.595282607 0.584455592 -0.071643641 0.626377284 -3.357657769 0.010243233 0.173254080
#> log-likelihood reduction: 0.00058225262
#> Value of gradient at current step:
#> 0.01697688169 0.18152150469 0.30278294083 0.05491324450 -0.00954208534 0.00046176213 0.02942429986
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.11199276
#> ----
#> Iteration number 8 log-likelihood: -17286.523
#> Parameter vector: -2.601354233 0.584513757 -0.071144386 0.626915261 -3.431719299 0.016721304 0.179806607
#> log-likelihood reduction: 0.00017410518
#> Value of gradient at current step:
#> -0.064034760 -0.379810901 -0.778700450 -0.045639365 -0.011572568 -0.203677953 -0.019963628
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.07406153
#> ----
#> Iteration number 9 log-likelihood: -17286.523
#> Parameter vector: -2.597126682 0.584506154 -0.071529657 0.626744005 -3.377281943 0.011722915 0.177519492
#> log-likelihood reduction: 0.000071507806
#> Value of gradient at current step:
#> 0.0284979151 0.1864404866 0.3666111521 0.0305300981 0.0016229304 0.0719860549 0.0142857723
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.054437356
#> ----
#> Iteration number 10 log-likelihood: -17286.523
#> Parameter vector: -2.600150970 0.584522770 -0.071267073 0.626938070 -3.415354274 0.015139829 0.179959991
#> log-likelihood reduction: 0.000035001824
#> Value of gradient at current step:
#> -0.0254323196 -0.1573738913 -0.3179746249 -0.0217129745 -0.0035760543 -0.0777211830 -0.0102459754
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.038072332
#> ----
#> Iteration number 11 log-likelihood: -17286.523
#> Parameter vector: -2.598008714 0.584514838 -0.071457541 0.626825132 -3.388080609 0.012664531 0.178504506
#> log-likelihood reduction: 0.000017260521
#> Value of gradient at current step:
#> 0.0166844643 0.1053460426 0.2101040472 0.0156399950 0.0016132423 0.0451631907 0.0071883615
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.027273665
#> ----
#> Iteration number 12 log-likelihood: -17286.523
#> Parameter vector: -2.599534056 0.584521813 -0.071323467 0.626914011 -3.407406275 0.014409036 0.179635638
#> log-likelihood reduction: 0.0000087810295
#> Value of gradient at current step:
#> -0.0121554909 -0.0761209122 -0.1529982539 -0.0109236603 -0.0015139582 -0.0360631619 -0.0051776855
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.019325666
#> ----
#> Iteration number 13 log-likelihood: -17286.523
#> Parameter vector: -2.598450181 0.584517321 -0.071419274 0.626853774 -3.393643298 0.013163381 0.178864482
#> log-likelihood reduction: 0.0000044078333
#> Value of gradient at current step:
#> 0.00863941235 0.05422850142 0.10851025481 0.00789351520 0.00092550566 0.02403409764 0.00364208947
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.013762977
#> ----
#> Iteration number 14 log-likelihood: -17286.523
#> Parameter vector: -2.599221083 0.584520680 -0.071351319 0.626897628 -3.403423424 0.014047410 0.179424307
#> log-likelihood reduction: 0.0000022386557
#> Value of gradient at current step:
#> -0.00609651399 -0.03826378502 -0.07677634455 -0.00553869224 -0.00072252915 -0.01776979990 -0.00261189222
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.0097801258
#> ----
#> Iteration number 15 log-likelihood: -17286.523
#> Parameter vector: -2.598672961 0.584518350 -0.071399702 0.626866800 -3.396467246 0.013418234 0.179030220
#> log-likelihood reduction: 0.0000011281627
#> Value of gradient at current step:
#> 0.00437552328 0.02744244081 0.05496756154 0.00397917475 0.00048523685 0.01233742716 0.00184538567
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.0069561777
#> ----
#> Iteration number 16 log-likelihood: -17286.523
#> Parameter vector: -2.599062724 0.584520028 -0.071365321 0.626888846 -3.401413268 0.013865450 0.179311848
#> log-likelihood reduction: 0.00000057176658
#> Value of gradient at current step:
#> -0.00308520077 -0.01936683164 -0.03883603649 -0.00280772877 -0.00035808186 -0.00890811713 -0.00131846263
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.0049460217
#> ----
#> Iteration number 17 log-likelihood: -17286.523
#> Parameter vector: -2.598785568 0.584518843 -0.071389778 0.626873213 -3.397896233 0.013547389 0.179112085
#> log-likelihood reduction: 0.00000028862269
#> Value of gradient at current step:
#> 0.00220900398 0.01385546526 0.02776312256 0.00200791788 0.00024850391 0.00627132383 0.00093429219
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.0035170353
#> ----
#> Iteration number 18 log-likelihood: -17286.523
#> Parameter vector: -2.598982644 0.584519689 -0.071372391 0.626884345 -3.400397179 0.013773541 0.179254311
#> log-likelihood reduction: 0.00000014611214
#> Value of gradient at current step:
#> -0.00156243814 -0.00980648384 -0.01966002003 -0.00142189173 -0.00017963917 -0.00448948244 -0.00066602383
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.0025009461
#> ----
#> Iteration number 19 log-likelihood: -17286.523
#> Parameter vector: -2.598842504 0.584519089 -0.071384756 0.626876435 -3.398618850 0.013612726 0.179153243
#> log-likelihood reduction: 0.00000007381459
#> Value of gradient at current step:
#> 0.00111546600 0.00699753811 0.01402367467 0.00101410800 0.00012631018 0.00317780227 0.00047274423
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.0017783286
#> ----
#> Iteration number 20 log-likelihood: -17286.523
#> Parameter vector: -2.598942153 0.584519516 -0.071375964 0.626882062 -3.399883416 0.013727078 0.179225136
#> log-likelihood reduction: 0.00000003734749
#> Value of gradient at current step:
#> -0.000790860150 -0.004963117716 -0.009948972121 -0.000719565560 -0.000090519732 -0.002266834445 -0.000336593619
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.0012645652
#> ----
#> Iteration number 21 log-likelihood: -17286.523
#> Parameter vector: -2.598871294 0.584519212 -0.071382216 0.626878062 -3.398984225 0.013645765 0.179174024
#> log-likelihood reduction: 0.000000018873834
#> Value of gradient at current step:
#> 0.000563568332 0.003535731060 0.007086435089 0.000512456788 0.000064017826 0.001608354191 0.000239124512
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.0008991904
#> ----
#> Iteration number 22 log-likelihood: -17286.523
#> Parameter vector: -2.598921680 0.584519428 -0.071377771 0.626880906 -3.399623632 0.013703585 0.179210372
#> log-likelihood reduction: 0.0000000095496944
#> Value of gradient at current step:
#> -0.000400125264 -0.002510830909 -0.005032906088 -0.000363998081 -0.000045696107 -0.001145438950 -0.000170148829
#> Algorithm will terminate if one of following conditions will be met:
#> The increase to minus log-likelihood will be bellow chosen value of epsilon 1e-08
#> Maximum change to the vector of regression parameters will be bellow the chosen value of epsilon.
#> At current step the highest change was: 0.00063940667
#> ----
#> Value of analytically computed hessian at fitted regression coefficients:
#> [,1] [,2] [,3] [,4] [,5] [,6]
#> [1,] -5941.804 -33237.6696 -63184.3939 -4042.8998 424.63598 23751.3293
#> [2,] -33237.670 -191051.4616 -353329.4001 -23640.8438 4526.54681 1389.4971
#> [3,] -63184.394 -353329.4001 -674494.4908 -42806.7283 247.79024 4526.5468
#> [4,] -4042.900 -23640.8438 -42806.7283 -4042.8998 2229.15341 48421.1063
#> [5,] 424.636 247.7902 48421.1063 1389.4971 -69.94232 -744.9399
#> [6,] 2229.153 4526.5468 2624.5806 2624.5806 -744.93988 -7973.6057
#> [7,] 4526.547 23751.3293 247.7902 247.7902 -45.99667 -490.0571
#> [,7]
#> [1,] 2624.58059
#> [2,] 247.79024
#> [3,] 2624.58059
#> [4,] 247.79024
#> [5,] -45.99667
#> [6,] -490.05713
#> [7,] -45.99667
#> The matrix above has the following eigen values:
#> -869785.7+0i -17240.18+0i -2472.809+9708.042i -2472.809-9708.042i 8149.489+0i 1615.552+0i -1413.766+0i
# extract results
# regression coefficient vector
res$beta
#> [1] -2.59892168 0.58451943 -0.07137777 0.62688091 -3.39962363 0.01370359
#> [7] 0.17921037
# check likelihood
ll <- ztoigeom()$makeMinusLogLike(y = farmsubmission$TOTAL_SUB, X = X)
-ll(res$beta)
#> [1] -17286.52
# number of iterations
res$iter
#> [1] 22
# working weights
head(res$weights)
#> lambda mixed mixed omega
#> [1,] 0.2733879 -0.03187827 -0.03187827 0.004860059
#> [2,] 0.6783958 -0.03738217 -0.03738217 0.007747769
#> [3,] 0.1145154 -0.02534924 -0.02534924 0.006028454
#> [4,] 0.1790770 -0.02931302 -0.02931302 0.005523789
#> [5,] 0.3987180 -0.03319312 -0.03319312 0.004479829
#> [6,] 0.4920636 -0.03350614 -0.03350614 0.004531546
# Compare with optim call
res2 <- estimatePopsizeFit(
y = farmsubmission$TOTAL_SUB,
X = X,
method = "optim",
priorWeights = 1,
family = ztoigeom(),
coefStart = c(start, 0, 0, 0),
control = controlMethod(verbose = 1, silent = TRUE),
offset = cbind(rep(0, NROW(farmsubmission)), rep(0, NROW(farmsubmission)))
)
#> Nelder-Mead direct search function minimizer
#> function value for initial parameters = 19135.970356
#> Scaled convergence tolerance is 0.00019136
#> Stepsize computed as 0.082584
#> BUILD 8 21628.437230 19133.539224
#> REFLECTION 10 20756.644804 18940.732447
#> LO-REDUCTION 12 19606.916214 18926.129600
#> LO-REDUCTION 14 19309.305936 18847.773068
#> EXTENSION 16 19269.501942 18303.096276
#> LO-REDUCTION 18 19153.670565 18303.096276
#> EXTENSION 20 19135.970356 17912.380725
#> LO-REDUCTION 22 19133.539224 17912.380725
#> LO-REDUCTION 24 18940.732447 17912.380725
#> LO-REDUCTION 26 18926.129600 17912.380725
#> LO-REDUCTION 28 18847.773068 17912.380725
#> LO-REDUCTION 30 18330.888204 17912.380725
#> EXTENSION 32 18303.096276 17699.648860
#> EXTENSION 34 18212.293899 17558.677603
#> HI-REDUCTION 36 18078.266152 17558.677603
#> LO-REDUCTION 38 18077.244658 17558.677603
#> EXTENSION 40 18046.635595 17434.246747
#> LO-REDUCTION 42 17966.526721 17434.246747
#> LO-REDUCTION 44 17912.380725 17434.246747
#> LO-REDUCTION 46 17871.858218 17434.246747
#> LO-REDUCTION 48 17699.648860 17434.246747
#> LO-REDUCTION 50 17650.163809 17434.246747
#> LO-REDUCTION 52 17558.677603 17434.246747
#> HI-REDUCTION 54 17516.785947 17434.246747
#> REFLECTION 56 17467.768303 17420.151936
#> HI-REDUCTION 58 17467.699076 17420.151936
#> EXTENSION 60 17465.840145 17381.144605
#> LO-REDUCTION 62 17465.538855 17381.144605
#> LO-REDUCTION 64 17457.288417 17381.144605
#> LO-REDUCTION 66 17442.024150 17381.144605
#> LO-REDUCTION 68 17440.392477 17381.144605
#> EXTENSION 70 17434.246747 17334.895518
#> LO-REDUCTION 72 17420.151936 17334.895518
#> LO-REDUCTION 74 17416.961045 17334.895518
#> LO-REDUCTION 76 17402.660537 17334.895518
#> LO-REDUCTION 78 17394.959214 17334.895518
#> LO-REDUCTION 80 17392.532797 17334.895518
#> EXTENSION 82 17381.144605 17316.504861
#> LO-REDUCTION 84 17375.832799 17316.504861
#> LO-REDUCTION 86 17363.774766 17316.504861
#> REFLECTION 88 17343.751331 17305.644043
#> LO-REDUCTION 90 17342.366351 17305.644043
#> EXTENSION 92 17338.983203 17299.308930
#> LO-REDUCTION 94 17334.895518 17299.308930
#> LO-REDUCTION 96 17324.646822 17299.308930
#> LO-REDUCTION 98 17323.590625 17299.308930
#> LO-REDUCTION 100 17316.627163 17299.308930
#> LO-REDUCTION 102 17316.504861 17299.308930
#> LO-REDUCTION 104 17309.426844 17299.308930
#> LO-REDUCTION 106 17306.896574 17299.213022
#> LO-REDUCTION 108 17305.644043 17299.213022
#> HI-REDUCTION 110 17301.855713 17299.213022
#> REFLECTION 112 17301.803640 17298.374210
#> HI-REDUCTION 114 17301.796394 17298.374210
#> LO-REDUCTION 116 17301.489802 17298.374210
#> LO-REDUCTION 118 17300.957660 17298.374210
#> LO-REDUCTION 120 17300.016126 17298.374210
#> HI-REDUCTION 122 17299.611047 17298.374210
#> REFLECTION 124 17299.308930 17298.093107
#> EXTENSION 126 17299.213022 17297.231097
#> REFLECTION 128 17298.925386 17297.171892
#> REFLECTION 130 17298.732554 17297.077851
#> LO-REDUCTION 132 17298.452859 17297.077851
#> LO-REDUCTION 134 17298.382263 17297.077851
#> REFLECTION 136 17298.374210 17296.980993
#> REFLECTION 138 17298.093107 17296.468183
#> EXTENSION 140 17297.268148 17295.433620
#> LO-REDUCTION 142 17297.231097 17295.433620
#> LO-REDUCTION 144 17297.201571 17295.433620
#> REFLECTION 146 17297.171892 17295.341847
#> LO-REDUCTION 148 17297.077851 17295.341847
#> EXTENSION 150 17296.980993 17294.284096
#> LO-REDUCTION 152 17296.468183 17294.284096
#> EXTENSION 154 17295.993173 17293.316067
#> LO-REDUCTION 156 17295.517735 17293.316067
#> LO-REDUCTION 158 17295.494544 17293.316067
#> LO-REDUCTION 160 17295.433620 17293.316067
#> EXTENSION 162 17295.341847 17292.072213
#> LO-REDUCTION 164 17295.283117 17292.072213
#> LO-REDUCTION 166 17294.357739 17292.072213
#> LO-REDUCTION 168 17294.284096 17292.072213
#> LO-REDUCTION 170 17294.231320 17292.072213
#> EXTENSION 172 17294.104223 17291.423540
#> LO-REDUCTION 174 17293.669383 17291.423540
#> REFLECTION 176 17293.316067 17291.060821
#> EXTENSION 178 17292.290481 17290.565091
#> LO-REDUCTION 180 17292.217296 17290.565091
#> LO-REDUCTION 182 17292.188283 17290.565091
#> LO-REDUCTION 184 17292.072213 17290.565091
#> LO-REDUCTION 186 17291.567818 17290.565091
#> LO-REDUCTION 188 17291.423540 17290.517025
#> EXTENSION 190 17291.060821 17289.934833
#> LO-REDUCTION 192 17291.007425 17289.934833
#> LO-REDUCTION 194 17290.866709 17289.934833
#> LO-REDUCTION 196 17290.817445 17289.934833
#> LO-REDUCTION 198 17290.758168 17289.934833
#> LO-REDUCTION 200 17290.565091 17289.934833
#> LO-REDUCTION 202 17290.530576 17289.934833
#> EXTENSION 204 17290.517025 17289.755906
#> LO-REDUCTION 206 17290.282088 17289.755906
#> LO-REDUCTION 208 17290.248001 17289.755906
#> LO-REDUCTION 210 17290.223189 17289.755906
#> REFLECTION 212 17290.127309 17289.725940
#> LO-REDUCTION 214 17290.098882 17289.725940
#> LO-REDUCTION 216 17290.036552 17289.725940
#> LO-REDUCTION 218 17289.934833 17289.725940
#> LO-REDUCTION 220 17289.902270 17289.725940
#> LO-REDUCTION 222 17289.890661 17289.725940
#> REFLECTION 224 17289.820937 17289.702686
#> LO-REDUCTION 226 17289.777081 17289.702312
#> REFLECTION 228 17289.758951 17289.686667
#> EXTENSION 230 17289.755906 17289.666388
#> EXTENSION 232 17289.747982 17289.610366
#> EXTENSION 234 17289.745697 17289.562699
#> HI-REDUCTION 236 17289.725940 17289.562699
#> LO-REDUCTION 238 17289.702686 17289.562699
#> LO-REDUCTION 240 17289.702312 17289.562699
#> LO-REDUCTION 242 17289.686667 17289.562699
#> REFLECTION 244 17289.666388 17289.553928
#> EXTENSION 246 17289.659099 17289.430319
#> LO-REDUCTION 248 17289.625783 17289.430319
#> LO-REDUCTION 250 17289.610366 17289.430319
#> LO-REDUCTION 252 17289.589639 17289.430319
#> EXTENSION 254 17289.581544 17289.366344
#> LO-REDUCTION 256 17289.562699 17289.366344
#> EXTENSION 258 17289.553928 17289.355186
#> REFLECTION 260 17289.524309 17289.347390
#> EXTENSION 262 17289.463415 17289.256311
#> LO-REDUCTION 264 17289.438892 17289.256311
#> EXTENSION 266 17289.430319 17289.194525
#> LO-REDUCTION 268 17289.422342 17289.194525
#> LO-REDUCTION 270 17289.366344 17289.194525
#> REFLECTION 272 17289.355186 17289.169478
#> HI-REDUCTION 274 17289.347390 17289.169478
#> LO-REDUCTION 276 17289.258763 17289.169478
#> LO-REDUCTION 278 17289.256311 17289.169478
#> LO-REDUCTION 280 17289.233544 17289.169478
#> HI-REDUCTION 282 17289.220868 17289.169478
#> LO-REDUCTION 284 17289.211407 17289.169478
#> LO-REDUCTION 286 17289.194525 17289.169478
#> LO-REDUCTION 288 17289.192199 17289.169478
#> LO-REDUCTION 290 17289.186075 17289.169478
#> REFLECTION 292 17289.177779 17289.164394
#> LO-REDUCTION 294 17289.177465 17289.164394
#> LO-REDUCTION 296 17289.176353 17289.164394
#> LO-REDUCTION 298 17289.173142 17289.164394
#> LO-REDUCTION 300 17289.171672 17289.164394
#> REFLECTION 302 17289.170351 17289.162643
#> LO-REDUCTION 304 17289.169550 17289.162479
#> REFLECTION 306 17289.169478 17289.160797
#> REFLECTION 308 17289.165906 17289.159411
#> LO-REDUCTION 310 17289.165109 17289.159411
#> LO-REDUCTION 312 17289.164417 17289.159411
#> LO-REDUCTION 314 17289.164394 17289.159411
#> REFLECTION 316 17289.162643 17289.158035
#> LO-REDUCTION 318 17289.162479 17289.158035
#> LO-REDUCTION 320 17289.161336 17289.158035
#> LO-REDUCTION 322 17289.160972 17289.158035
#> REFLECTION 324 17289.160797 17289.157923
#> LO-REDUCTION 326 17289.160192 17289.157923
#> REFLECTION 328 17289.159411 17289.157174
#> LO-REDUCTION 330 17289.159135 17289.157174
#> LO-REDUCTION 332 17289.159042 17289.157174
#> REFLECTION 334 17289.158322 17289.156947
#> REFLECTION 336 17289.158042 17289.156521
#> LO-REDUCTION 338 17289.158035 17289.156521
#> LO-REDUCTION 340 17289.157923 17289.156521
#> REFLECTION 342 17289.157547 17289.156342
#> LO-REDUCTION 344 17289.157424 17289.156342
#> REFLECTION 346 17289.157174 17289.156151
#> LO-REDUCTION 348 17289.157122 17289.156151
#> LO-REDUCTION 350 17289.157110 17289.156151
#> REFLECTION 352 17289.156947 17289.155928
#> LO-REDUCTION 354 17289.156532 17289.155928
#> EXTENSION 356 17289.156521 17289.155659
#> EXTENSION 358 17289.156501 17289.155347
#> EXTENSION 360 17289.156342 17289.155165
#> LO-REDUCTION 362 17289.156239 17289.155165
#> EXTENSION 364 17289.156151 17289.154673
#> LO-REDUCTION 366 17289.156024 17289.154673
#> EXTENSION 368 17289.155928 17289.153645
#> LO-REDUCTION 370 17289.155659 17289.153645
#> LO-REDUCTION 372 17289.155347 17289.153645
#> LO-REDUCTION 374 17289.155336 17289.153645
#> LO-REDUCTION 376 17289.155165 17289.153645
#> REFLECTION 378 17289.155017 17289.153558
#> EXTENSION 380 17289.154673 17289.153090
#> LO-REDUCTION 382 17289.154524 17289.153090
#> EXTENSION 384 17289.154080 17289.152577
#> EXTENSION 386 17289.154065 17289.152162
#> REFLECTION 388 17289.153701 17289.152077
#> LO-REDUCTION 390 17289.153645 17289.152077
#> REFLECTION 392 17289.153558 17289.151837
#> LO-REDUCTION 394 17289.153156 17289.151837
#> LO-REDUCTION 396 17289.153090 17289.151837
#> LO-REDUCTION 398 17289.152577 17289.151837
#> HI-REDUCTION 400 17289.152418 17289.151837
#> EXTENSION 402 17289.152162 17289.150909
#> LO-REDUCTION 404 17289.152109 17289.150909
#> LO-REDUCTION 406 17289.152077 17289.150909
#> LO-REDUCTION 408 17289.152055 17289.150909
#> LO-REDUCTION 410 17289.151913 17289.150909
#> LO-REDUCTION 412 17289.151868 17289.150909
#> LO-REDUCTION 414 17289.151837 17289.150909
#> EXTENSION 416 17289.151677 17289.150529
#> LO-REDUCTION 418 17289.151620 17289.150529
#> EXTENSION 420 17289.151536 17289.150258
#> LO-REDUCTION 422 17289.151371 17289.150258
#> EXTENSION 424 17289.151226 17289.149282
#> LO-REDUCTION 426 17289.151019 17289.149282
#> LO-REDUCTION 428 17289.150909 17289.149282
#> LO-REDUCTION 430 17289.150778 17289.149282
#> LO-REDUCTION 432 17289.150529 17289.149282
#> LO-REDUCTION 434 17289.150459 17289.149282
#> LO-REDUCTION 436 17289.150258 17289.149282
#> EXTENSION 438 17289.150196 17289.149030
#> LO-REDUCTION 440 17289.150015 17289.149030
#> EXTENSION 442 17289.149732 17289.148215
#> LO-REDUCTION 444 17289.149724 17289.148215
#> LO-REDUCTION 446 17289.149661 17289.148215
#> EXTENSION 448 17289.149490 17289.148082
#> REFLECTION 450 17289.149282 17289.147882
#> HI-REDUCTION 452 17289.149154 17289.147882
#> EXTENSION 454 17289.149030 17289.147689
#> EXTENSION 456 17289.148634 17289.146503
#> LO-REDUCTION 458 17289.148548 17289.146503
#> LO-REDUCTION 460 17289.148356 17289.146503
#> LO-REDUCTION 462 17289.148215 17289.146503
#> LO-REDUCTION 464 17289.148082 17289.146503
#> LO-REDUCTION 466 17289.147882 17289.146503
#> LO-REDUCTION 468 17289.147689 17289.146503
#> LO-REDUCTION 470 17289.147390 17289.146503
#> EXTENSION 472 17289.147372 17289.146209
#> EXTENSION 474 17289.147325 17289.145509
#> LO-REDUCTION 476 17289.147206 17289.145509
#> LO-REDUCTION 478 17289.147159 17289.145509
#> EXTENSION 480 17289.146556 17289.144353
#> LO-REDUCTION 482 17289.146550 17289.144353
#> LO-REDUCTION 484 17289.146503 17289.144353
#> EXTENSION 486 17289.146209 17289.143600
#> LO-REDUCTION 488 17289.145788 17289.143600
#> LO-REDUCTION 490 17289.145629 17289.143600
#> EXTENSION 492 17289.145509 17289.142801
#> LO-REDUCTION 494 17289.145288 17289.142801
#> EXTENSION 496 17289.144749 17289.142580
#> LO-REDUCTION 498 17289.144353 17289.142580
#> REFLECTION 500 17289.143924 17289.142388
#> LO-REDUCTION 502 17289.143813 17289.142388
#> LO-REDUCTION 504 17289.143710 17289.142388
#> EXTENSION 506 17289.143600 17289.141784
#> LO-REDUCTION 508 17289.142801 17289.141784
#> HI-REDUCTION 510 17289.142748 17289.141784
#> LO-REDUCTION 512 17289.142616 17289.141784
#> LO-REDUCTION 514 17289.142580 17289.141784
#> REFLECTION 516 17289.142500 17289.141716
#> LO-REDUCTION 518 17289.142388 17289.141716
#> REFLECTION 520 17289.142334 17289.141585
#> LO-REDUCTION 522 17289.142234 17289.141585
#> EXTENSION 524 17289.141991 17289.140765
#> LO-REDUCTION 526 17289.141796 17289.140765
#> LO-REDUCTION 528 17289.141786 17289.140765
#> LO-REDUCTION 530 17289.141784 17289.140765
#> LO-REDUCTION 532 17289.141772 17289.140765
#> EXTENSION 534 17289.141716 17289.140229
#> LO-REDUCTION 536 17289.141585 17289.140229
#> EXTENSION 538 17289.141362 17289.139857
#> LO-REDUCTION 540 17289.141111 17289.139857
#> EXTENSION 542 17289.140987 17289.139368
#> LO-REDUCTION 544 17289.140866 17289.139368
#> LO-REDUCTION 546 17289.140765 17289.139368
#> REFLECTION 548 17289.140709 17289.139248
#> LO-REDUCTION 550 17289.140229 17289.139248
#> REFLECTION 552 17289.139904 17289.139012
#> REFLECTION 554 17289.139857 17289.138897
#> LO-REDUCTION 556 17289.139487 17289.138897
#> LO-REDUCTION 558 17289.139371 17289.138897
#> LO-REDUCTION 560 17289.139368 17289.138897
#> LO-REDUCTION 562 17289.139253 17289.138897
#> EXTENSION 564 17289.139248 17289.138535
#> LO-REDUCTION 566 17289.139012 17289.138535
#> LO-REDUCTION 568 17289.139007 17289.138535
#> LO-REDUCTION 570 17289.138999 17289.138535
#> LO-REDUCTION 572 17289.138990 17289.138535
#> LO-REDUCTION 574 17289.138975 17289.138535
#> LO-REDUCTION 576 17289.138897 17289.138535
#> REFLECTION 578 17289.138817 17289.138485
#> LO-REDUCTION 580 17289.138745 17289.138485
#> EXTENSION 582 17289.138723 17289.138282
#> LO-REDUCTION 584 17289.138641 17289.138282
#> LO-REDUCTION 586 17289.138571 17289.138282
#> LO-REDUCTION 588 17289.138543 17289.138282
#> LO-REDUCTION 590 17289.138535 17289.138282
#> LO-REDUCTION 592 17289.138526 17289.138282
#> EXTENSION 594 17289.138485 17289.138060
#> EXTENSION 596 17289.138356 17289.137752
#> LO-REDUCTION 598 17289.138332 17289.137752
#> LO-REDUCTION 600 17289.138307 17289.137752
#> LO-REDUCTION 602 17289.138302 17289.137752
#> EXTENSION 604 17289.138289 17289.137475
#> LO-REDUCTION 606 17289.138282 17289.137475
#> LO-REDUCTION 608 17289.138060 17289.137475
#> EXTENSION 610 17289.138056 17289.137172
#> LO-REDUCTION 612 17289.137937 17289.137172
#> EXTENSION 614 17289.137833 17289.136763
#> LO-REDUCTION 616 17289.137808 17289.136763
#> EXTENSION 618 17289.137752 17289.136209
#> LO-REDUCTION 620 17289.137512 17289.136209
#> EXTENSION 622 17289.137475 17289.135715
#> EXTENSION 624 17289.137183 17289.134720
#> LO-REDUCTION 626 17289.137172 17289.134720
#> LO-REDUCTION 628 17289.136910 17289.134720
#> EXTENSION 630 17289.136763 17289.133898
#> LO-REDUCTION 632 17289.136395 17289.133898
#> EXTENSION 634 17289.136209 17289.132040
#> LO-REDUCTION 636 17289.135715 17289.132040
#> LO-REDUCTION 638 17289.135220 17289.132040
#> EXTENSION 640 17289.134996 17289.130704
#> LO-REDUCTION 642 17289.134720 17289.130704
#> EXTENSION 644 17289.133962 17289.130357
#> EXTENSION 646 17289.133898 17289.128792
#> EXTENSION 648 17289.132444 17289.125823
#> LO-REDUCTION 650 17289.132232 17289.125823
#> LO-REDUCTION 652 17289.132040 17289.125823
#> LO-REDUCTION 654 17289.130832 17289.125823
#> LO-REDUCTION 656 17289.130704 17289.125823
#> LO-REDUCTION 658 17289.130357 17289.125823
#> LO-REDUCTION 660 17289.128792 17289.125823
#> LO-REDUCTION 662 17289.128276 17289.125823
#> LO-REDUCTION 664 17289.128208 17289.125823
#> EXTENSION 666 17289.128166 17289.124162
#> LO-REDUCTION 668 17289.128165 17289.124162
#> EXTENSION 670 17289.127639 17289.122521
#> LO-REDUCTION 672 17289.126750 17289.122521
#> LO-REDUCTION 674 17289.126352 17289.122521
#> EXTENSION 676 17289.125995 17289.120555
#> LO-REDUCTION 678 17289.125823 17289.120555
#> EXTENSION 680 17289.125122 17289.120009
#> EXTENSION 682 17289.124162 17289.118228
#> LO-REDUCTION 684 17289.122960 17289.118228
#> LO-REDUCTION 686 17289.122937 17289.118228
#> REFLECTION 688 17289.122521 17289.118049
#> LO-REDUCTION 690 17289.121998 17289.118049
#> EXTENSION 692 17289.120555 17289.114665
#> HI-REDUCTION 694 17289.120009 17289.114665
#> LO-REDUCTION 696 17289.119590 17289.114665
#> LO-REDUCTION 698 17289.119356 17289.114665
#> LO-REDUCTION 700 17289.118291 17289.114665
#> LO-REDUCTION 702 17289.118288 17289.114665
#> EXTENSION 704 17289.118228 17289.113381
#> LO-REDUCTION 706 17289.118049 17289.113381
#> LO-REDUCTION 708 17289.117504 17289.113381
#> EXTENSION 710 17289.116483 17289.112471
#> EXTENSION 712 17289.115678 17289.109345
#> LO-REDUCTION 714 17289.115541 17289.109345
#> LO-REDUCTION 716 17289.114665 17289.109345
#> LO-REDUCTION 718 17289.114477 17289.109345
#> LO-REDUCTION 720 17289.113634 17289.109345
#> LO-REDUCTION 722 17289.113381 17289.109345
#> LO-REDUCTION 724 17289.112766 17289.109345
#> LO-REDUCTION 726 17289.112471 17289.109345
#> EXTENSION 728 17289.111818 17289.107773
#> LO-REDUCTION 730 17289.111746 17289.107773
#> LO-REDUCTION 732 17289.111245 17289.107773
#> EXTENSION 734 17289.111091 17289.106063
#> LO-REDUCTION 736 17289.110663 17289.106063
#> LO-REDUCTION 738 17289.109600 17289.106063
#> EXTENSION 740 17289.109345 17289.105024
#> LO-REDUCTION 742 17289.108880 17289.105024
#> EXTENSION 744 17289.107989 17289.103245
#> LO-REDUCTION 746 17289.107773 17289.103245
#> EXTENSION 748 17289.106271 17289.102524
#> EXTENSION 750 17289.106140 17289.100785
#> HI-REDUCTION 752 17289.106063 17289.100785
#> LO-REDUCTION 754 17289.105467 17289.100785
#> LO-REDUCTION 756 17289.105024 17289.100785
#> EXTENSION 758 17289.104800 17289.099737
#> LO-REDUCTION 760 17289.103902 17289.099737
#> HI-REDUCTION 762 17289.103245 17289.099737
#> EXTENSION 764 17289.102760 17289.098971
#> EXTENSION 766 17289.102723 17289.097388
#> LO-REDUCTION 768 17289.102524 17289.097388
#> EXTENSION 770 17289.101955 17289.095649
#> LO-REDUCTION 772 17289.100785 17289.095649
#> LO-REDUCTION 774 17289.100237 17289.095649
#> EXTENSION 776 17289.099737 17289.094176
#> LO-REDUCTION 778 17289.098971 17289.094176
#> LO-REDUCTION 780 17289.098143 17289.094176
#> LO-REDUCTION 782 17289.097880 17289.094176
#> EXTENSION 784 17289.097591 17289.091226
#> EXTENSION 786 17289.097388 17289.089069
#> LO-REDUCTION 788 17289.095649 17289.089069
#> LO-REDUCTION 790 17289.094674 17289.089069
#> LO-REDUCTION 792 17289.094652 17289.089069
#> LO-REDUCTION 794 17289.094566 17289.089069
#> EXTENSION 796 17289.094176 17289.087095
#> LO-REDUCTION 798 17289.092354 17289.087095
#> LO-REDUCTION 800 17289.092156 17289.087095
#> LO-REDUCTION 802 17289.091715 17289.087095
#> EXTENSION 804 17289.091226 17289.083939
#> LO-REDUCTION 806 17289.089665 17289.083939
#> LO-REDUCTION 808 17289.089506 17289.083939
#> EXTENSION 810 17289.089069 17289.080477
#> LO-REDUCTION 812 17289.087649 17289.080477
#> LO-REDUCTION 814 17289.087188 17289.080477
#> LO-REDUCTION 816 17289.087095 17289.080477
#> LO-REDUCTION 818 17289.085216 17289.080477
#> LO-REDUCTION 820 17289.084941 17289.080477
#> LO-REDUCTION 822 17289.084029 17289.080477
#> EXTENSION 824 17289.083939 17289.078527
#> LO-REDUCTION 826 17289.082956 17289.078527
#> LO-REDUCTION 828 17289.082866 17289.078527
#> EXTENSION 830 17289.081381 17289.076568
#> LO-REDUCTION 832 17289.081227 17289.076568
#> LO-REDUCTION 834 17289.080496 17289.076568
#> EXTENSION 836 17289.080477 17289.074508
#> HI-REDUCTION 838 17289.079939 17289.074508
#> LO-REDUCTION 840 17289.079200 17289.074508
#> EXTENSION 842 17289.078527 17289.073373
#> EXTENSION 844 17289.077815 17289.072709
#> LO-REDUCTION 846 17289.077222 17289.072709
#> LO-REDUCTION 848 17289.076735 17289.072709
#> LO-REDUCTION 850 17289.076568 17289.072709
#> EXTENSION 852 17289.074832 17289.070756
#> LO-REDUCTION 854 17289.074508 17289.070756
#> LO-REDUCTION 856 17289.074125 17289.070756
#> LO-REDUCTION 858 17289.073623 17289.070756
#> EXTENSION 860 17289.073373 17289.068622
#> LO-REDUCTION 862 17289.073250 17289.068622
#> LO-REDUCTION 864 17289.072709 17289.068622
#> LO-REDUCTION 866 17289.072460 17289.068622
#> LO-REDUCTION 868 17289.072372 17289.068622
#> LO-REDUCTION 870 17289.071455 17289.068622
#> LO-REDUCTION 872 17289.071020 17289.068622
#> LO-REDUCTION 874 17289.070882 17289.068622
#> EXTENSION 876 17289.070756 17289.068081
#> EXTENSION 878 17289.070498 17289.065876
#> LO-REDUCTION 880 17289.069611 17289.065876
#> LO-REDUCTION 882 17289.069527 17289.065876
#> EXTENSION 884 17289.069417 17289.064672
#> EXTENSION 886 17289.068794 17289.061734
#> LO-REDUCTION 888 17289.068622 17289.061734
#> LO-REDUCTION 890 17289.068081 17289.061734
#> EXTENSION 892 17289.066584 17289.057845
#> LO-REDUCTION 894 17289.066230 17289.057845
#> LO-REDUCTION 896 17289.065876 17289.057845
#> EXTENSION 898 17289.064672 17289.055947
#> EXTENSION 900 17289.063358 17289.053844
#> EXTENSION 902 17289.063141 17289.052345
#> EXTENSION 904 17289.061734 17289.050642
#> EXTENSION 906 17289.059974 17289.047222
#> EXTENSION 908 17289.058292 17289.043892
#> LO-REDUCTION 910 17289.057845 17289.043892
#> LO-REDUCTION 912 17289.055947 17289.043892
#> LO-REDUCTION 914 17289.053844 17289.043892
#> HI-REDUCTION 916 17289.052345 17289.043892
#> HI-REDUCTION 918 17289.050642 17289.043892
#> LO-REDUCTION 920 17289.048103 17289.043892
#> HI-REDUCTION 922 17289.047899 17289.043892
#> LO-REDUCTION 924 17289.047866 17289.043892
#> LO-REDUCTION 926 17289.047222 17289.043892
#> LO-REDUCTION 928 17289.047131 17289.043892
#> EXTENSION 930 17289.046353 17289.042209
#> LO-REDUCTION 932 17289.046255 17289.042209
#> LO-REDUCTION 934 17289.045471 17289.042209
#> EXTENSION 936 17289.044714 17289.040269
#> EXTENSION 938 17289.044649 17289.037362
#> LO-REDUCTION 940 17289.044112 17289.037362
#> LO-REDUCTION 942 17289.043892 17289.037362
#> LO-REDUCTION 944 17289.042584 17289.037362
#> LO-REDUCTION 946 17289.042324 17289.037362
#> LO-REDUCTION 948 17289.042209 17289.037362
#> EXTENSION 950 17289.040382 17289.033960
#> LO-REDUCTION 952 17289.040269 17289.033960
#> LO-REDUCTION 954 17289.039777 17289.033960
#> EXTENSION 956 17289.039477 17289.031085
#> LO-REDUCTION 958 17289.039384 17289.031085
#> EXTENSION 960 17289.037477 17289.029757
#> LO-REDUCTION 962 17289.037362 17289.029757
#> LO-REDUCTION 964 17289.036963 17289.029757
#> EXTENSION 966 17289.034508 17289.025230
#> LO-REDUCTION 968 17289.033960 17289.025230
#> LO-REDUCTION 970 17289.033351 17289.025230
#> EXTENSION 972 17289.031085 17289.023573
#> LO-REDUCTION 974 17289.030785 17289.023573
#> LO-REDUCTION 976 17289.030431 17289.023573
#> LO-REDUCTION 978 17289.029757 17289.023573
#> LO-REDUCTION 980 17289.029215 17289.023573
#> LO-REDUCTION 982 17289.027198 17289.023573
#> EXTENSION 984 17289.026203 17289.022041
#> LO-REDUCTION 986 17289.025551 17289.022041
#> LO-REDUCTION 988 17289.025295 17289.022041
#> LO-REDUCTION 990 17289.025230 17289.022041
#> HI-REDUCTION 992 17289.024774 17289.022041
#> REFLECTION 994 17289.023776 17289.021364
#> LO-REDUCTION 996 17289.023573 17289.021364
#> LO-REDUCTION 998 17289.023375 17289.021364
#> EXTENSION 1000 17289.023258 17289.020647
#> Exiting from Nelder Mead minimizer
#> 1002 function evaluations used
# extract results
# regression coefficient vector
res2$beta
#> [1] -2.32798372 0.58760533 -0.09963433 0.63521793 0.41916222 -0.36081430
#> [7] 0.27574700
# check likelihood
-ll(res2$beta)
#> [1] -17289.02
# number of calls to log lik function
# since optim does not return the number of
# iterations
res2$iter
#> function gradient
#> 1002 NA
# optim does not calculated working weights
head(res2$weights)
#> [1] 1
# }