Skip to contents

Description

This R package is designed to perform record linkage (also known as entity resolution) in unsupervised or supervised settings. It compares pairs of records from two datasets using selected comparison functions to estimate the probability or density ratio between matched and non-matched records. Based on these estimates, it predicts a set of matches that maximizes entropy.

Installation

To install the development version from GitHub you can use the pak package.

# install.packages("pak") # uncomment if needed
pak::pkg_install("ncn-foreigners/automatedRecLin")

Basic usage

Load the package for the examples.

library(automatedRecLin)

Unsupervised maximum entropy classifier for record linkage

Generate two simple datasets that contain some common records, with typos in some cases.

df_1 <- data.frame(
  name = c("Emma", "Liam", "Olivia", "Noah", "Ava",
           "Ethan", "Sophia", "Mason", "Isabella", "James"),
  surname = c("Smith", "Johnson", "Williams", "Brown", "Jones",
              "Garcia", "Miller", "Davis", "Rodriguez", "Wilson"),
  city = c("New York", "Los Angeles", "Chicago", "Houston", "Phoenix",
           "Philadelphia", "San Antonio", "San Diego", "Dallas", "San Jose")
)
df_2 <- data.frame(
  name = c(
    "Emma", "Liam", "Olivia", "Noah",
    "Ava", "Ehtan", "Sopia", "Mson",
    "Charlotte", "Benjamin", "Amelia", "Lucas"
  ),
  surname = c(
    "Smith", "Johnson", "Williams", "Brown",
    "Jnes", "Garca", "Miler", "Dvis",
    "Martinez", "Lee", "Hernandez", "Clark"
  ),
  city = c(
    "New York", "Los Angeles", "Chicago", "Houston",
    "Phonix", "Philadelpia", "San Antnio", "San Dieg",
    "Seattle", "Miami", "Boston", "Denver"
  )
)
df_1
#>        name   surname         city
#> 1      Emma     Smith     New York
#> 2      Liam   Johnson  Los Angeles
#> 3    Olivia  Williams      Chicago
#> 4      Noah     Brown      Houston
#> 5       Ava     Jones      Phoenix
#> 6     Ethan    Garcia Philadelphia
#> 7    Sophia    Miller  San Antonio
#> 8     Mason     Davis    San Diego
#> 9  Isabella Rodriguez       Dallas
#> 10    James    Wilson     San Jose
df_2
#>         name   surname        city
#> 1       Emma     Smith    New York
#> 2       Liam   Johnson Los Angeles
#> 3     Olivia  Williams     Chicago
#> 4       Noah     Brown     Houston
#> 5        Ava      Jnes      Phonix
#> 6      Ehtan     Garca Philadelpia
#> 7      Sopia     Miler  San Antnio
#> 8       Mson      Dvis    San Dieg
#> 9  Charlotte  Martinez     Seattle
#> 10  Benjamin       Lee       Miami
#> 11    Amelia Hernandez      Boston
#> 12     Lucas     Clark      Denver

Specify the key variables used for record linkage. Select a comparison function (i.e. a function to compare pairs of records) for each variable. For example, use the jarowinkler_complement function from the automatedRecLin package (1 - Jaro-Winkler distance). Choose a method for estimating the probability or density ratio for each variable. The available methods are: "binary", "continuous_parametric" and "continuous_nonparametric".

variables <- c("name", "surname", "city")
comparators <- list(
  "name" = jarowinkler_complement(),
  "surname" = jarowinkler_complement(),
  "city" = jarowinkler_complement()
)
methods <- list(
  "name" = "continuous_parametric",
  "surname" = "continuous_parametric",
  "city" = "continuous_parametric"
)

Perform record linkage using the mec function. The output contains the following information:

  • the names of key variables,
  • the number of predicted matches,
  • the first 6 predicted matches (with their estimated probability or density ratio),
  • the method for constructing the predicted set of matches (default: "size"),
  • estimated false link rate (FLR),
  • estimated missing match rate (MMR),
  • estimated parameters for the variables using the "binary" or "continuous_parametric" methods.
set.seed(1)
unsup_result <- mec(A = df_1, B = df_2,
                    variables = variables,
                    comparators = comparators,
                    methods = methods)
unsup_result
#> Record linkage based on the following variables: name, surname, city.
#> ========================================================
#> The algorithm predicted 8 matches.
#> The first 6 predicted matches are:
#>        a     b ratio / 1000
#>    <num> <num>        <num>
#> 1:     6     6 1.433031e+08
#> 2:     8     8 3.198692e+07
#> 3:     7     7 9.673745e+05
#> 4:     5     5 2.813745e+04
#> 5:     1     1 3.375000e+00
#> 6:     2     2 3.375000e+00
#> ========================================================
#> The construction of the classification set was based on estimates of its size.
#> Estimated false link rate (FLR): 0.2066 %.
#> Estimated missing match rate (MMR): 0.0000 %.
#> ========================================================
#> Variables selected for the continuous parametric method: name, surname, city.
#> Estimated parameters for the continuous parametric method:
#>         variable p_0_M    alpha_M   beta_M      p_0_U  alpha_U    beta_U
#>           <char> <num>      <num>    <num>      <num>    <num>     <num>
#> 1:    gamma_name 0.625 138.462279 2199.107 0.04166667 6.516736 11.173089
#> 2: gamma_surname 0.500 120.665706 1974.530 0.03333333 4.622775  7.167261
#> 3:    gamma_city 0.500   6.512723  135.163 0.03333333 5.233194  9.313035

Supervised maximimum entropy classifier for record linkage

Generate two simple training datasets that contain some common records, with typos in some cases.

df_1_train <- data.frame(
        "name" = c("John", "Emily", "Mark", "Anna", "David"),
        "surname" = c("Smith", "Johnson", "Taylor", "Williams", "Brown")
)
df_2_train <- data.frame(
        "name" = c("John", "Emely", "Marc", "Michael"),
        "surname" = c("Smith", "Jonson", "Tailor", "Henderson")
)
df_1_train
#>    name  surname
#> 1  John    Smith
#> 2 Emily  Johnson
#> 3  Mark   Taylor
#> 4  Anna Williams
#> 5 David    Brown
df_2_train
#>      name   surname
#> 1    John     Smith
#> 2   Emely    Jonson
#> 3    Marc    Tailor
#> 4 Michael Henderson

Specify the key variables, select comparison functions and choose methods for estimating the probability or density ratio. Additionally, provide a data.frame indicating known matches.

variables_train <- c("name", "surname")
comparators_train <- list("name" = jarowinkler_complement(),
                          "surname" = jarowinkler_complement())
methods_train <- list("name" = "continuous_nonparametric",
                      "surname" = "continuous_nonparametric")
matches_train <- data.frame("a" = 1:3, "b" = 1:3)

Train a record linkage model using the train_rec_lin function.

model <- train_rec_lin(A = df_1_train, B = df_2_train,
                       matches = matches_train,
                       variables = variables_train,
                       comparators = comparators_train,
                       methods = methods_train)
model
#> Record linkage model based on the following variables: name, surname.
#> The prior probability of matching is 0.15.
#> ========================================================
#> Variables selected for the continuous nonparametric method: name, surname.

Generate two new datasets for record linkage prediction.

df_1_new <- data.frame(
  "name" = c("Jame", "Lia", "Tomas", "Matthew", "Andrew"),
  "surname" = c("Wilsen", "Thomsson", "Davis", "Robinson", "Scott")
)
df_2_new <- data.frame(
  "name" = c("James", "Leah", "Thomas", "Mathew", "Andrew", "Sophie"),
  "surname" = c("Wilson", "Thompson", "Davies", "Robins", "Scots", "Clarks")
)
df_1_new
#>      name  surname
#> 1    Jame   Wilsen
#> 2     Lia Thomsson
#> 3   Tomas    Davis
#> 4 Matthew Robinson
#> 5  Andrew    Scott
df_2_new
#>     name  surname
#> 1  James   Wilson
#> 2   Leah Thompson
#> 3 Thomas   Davies
#> 4 Mathew   Robins
#> 5 Andrew    Scots
#> 6 Sophie   Clarks

Predict matches using the predict function. The output has a similar structure to that of the mec function.

result_sup <- predict(model, df_1_new, df_2_new)
result_sup
#> The algorithm predicted 5 matches.
#> The first 5 predicted matches are:
#>        a     b ratio / 1000
#>    <num> <num>        <num>
#> 1:     3     3    0.6466869
#> 2:     4     4    0.5865049
#> 3:     1     1    0.5696382
#> 4:     5     5    0.3103742
#> 5:     2     2    0.2935612
#> ========================================================
#> The construction of the classification set was based on estimates of its size.
#> Estimated false link rate (FLR): 1.1486 %.
#> Estimated missing match rate (MMR): 1.1486 %.

Integration with a custom machine learning model

The automatedRecLin package supports supervised record linkage using a custom machine learning (ML) model that predicts the probability of matching based on comparison vectors (e.g., XGBoost, logistic regression). For example, install and load the xgboost package.

# install.packages("xgboost") # uncomment if needed
library(xgboost)

Use the same data, variables, and comparators as in the previous example. First, use the comparison_vectors function to create comparison vectors that the model will be trained on.

vectors <- comparison_vectors(A = df_1_train, B = df_2_train,
                              variables = variables_train,
                              comparators = comparators_train,
                              matches = matches_train)
vectors
#> Comparison based on the following variables: name, surname.
#> ========================================================
#>        a     b gamma_name gamma_surname match
#>    <int> <int>      <num>         <num> <num>
#> 1:     1     1  0.0000000    0.00000000     1
#> 2:     1     2  1.0000000    1.00000000     0
#> 3:     1     3  1.0000000    0.54444444     0
#> 4:     1     4  0.5357143    1.00000000     0
#> 5:     2     1  1.0000000    0.55238095     0
#> 6:     2     2  0.1333333    0.04761905     1

Construct the xgb.DMatrix object, specify the model parameters, and train the XGBoost model.

train_data <- xgb.DMatrix(
  data = as.matrix(vectors$Omega[, c("gamma_name", "gamma_surname")]),
  label = vectors$Omega$match
)
params <- list(objective = "binary:logistic",
               eval_metric = "logloss")
model_xgb <- xgboost(data = train_data, params = params,
                     nrounds = 100, verbose = 0)

Create the XGBoost-based record linkage model.

custom_xgb_model <- custom_rec_lin_model(model_xgb, vectors)
custom_xgb_model
#> Record linkage model based on the following variables: name, surname.
#> A custom ML model was used.
#> The prior probability of matching is 0.15.

Use the model for predictions. Note that the xgboost package requires a matrix as input for the predict function and that needs to be specified in the data_type argument. Set type = "prob" to ensure the XGBoost model predicts the probability of matching (this argument may vary depending on the model or library used).

result_xgb <- predict(custom_xgb_model, df_1_new, df_2_new,
                      data_type = "matrix", type = "prob")
result_xgb
#> The algorithm predicted 5 matches.
#> The first 5 predicted matches are:
#>        a     b ratio / 1000
#>    <num> <num>        <num>
#> 1:     1     1   0.01200467
#> 2:     2     2   0.01200467
#> 3:     3     3   0.01200467
#> 4:     4     4   0.01200467
#> 5:     5     5   0.01200467
#> ========================================================
#> The construction of the classification set was based on estimates of its size.
#> Estimated false link rate (FLR): 29.4037 %.
#> Estimated missing match rate (MMR): 29.4037 %.

Funding

Work on this package is supported by the National Science Centre, OPUS 20 grant no. 2020/39/B/HS4/00941 (Towards census-like statistics for foreign-born populations – quality, data integration and estimation).

References

Lee, D., Zhang, L.-C. and Kim, J. K. (2022). Maximum entropy classification for record linkage. Survey Methodology, Statistics Canada, Catalogue No. 12-001-X, Vol. 48, No. 1.

Vo, T. H., Chauvet, G., Happe, A., Oger, E., Paquelet, S., and Garès, V. (2023). Extending the Fellegi-Sunter record linkage model for mixed-type data with application to the French national health data system. Computational Statistics & Data Analysis, 179, 107656.

Sugiyama, M., Suzuki, T., Nakajima, S. et al. Direct importance estimation for covariate shift adaptation. Ann Inst Stat Math 60, 699–746 (2008).